Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study.
نویسندگان
چکیده
UNLABELLED Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13-150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies. FROM THE CLINICAL EDITOR Applications of nanoparticle synthesis with microfluidic methods are typically limited to in vitro studies due to low production rates. The team of authors of this proof-of-principle study reports on the successful parallelization of NP synthesis by 3D hydrodynamic flow focusing using a multilayer microfluidic system to enhance production rate without losing the advantages of reproducibility, controllability, and robustness.
منابع مشابه
Novel Synthesis of Polymeric Nanoparticles for Drug Delivery Applications Using Microfluidic Rapid Mixing
We report the use of microfluidic rapid mixing using hydrodynamic flow focusing to control the self-assembly of polymeric nanoparticles (NPs) that can be used for drug delivery. PLGA-PEG polymeric NPs and PLGA-lipid hybrid NPs were synthesized through nanoprecipitation—a process that involves dilution of a block copolymer from a solvent to an anti-solvent resulting in the precipitation of NPs. ...
متن کاملSynthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels.
Recently, polymeric nanoparticles (NPs) have attracted enormous attention as targeted drug delivery vehicles.[1-4] Especially, biodegradable and biocompatible polymeric NPs comprised of poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) block copolymers exhibit optimal physicochemical characteristics such as the ability to incorporate various targeting agents, enhanced immune evasion, c...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملOptimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials
BACKGROUND The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be re-optimized due to differences in fabrication techniques for clinical production. Seve...
متن کاملMicrofluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters.
Core-shell hybrid nanoparticles (NPs) for drug delivery have attracted numerous attentions due to their enhanced therapeutic efficacy and good biocompatibility. In this work, we fabricate a two-stage microfluidic chip to implement a high-throughput, one-step, and size-tunable synthesis of mono-disperse lipid-poly (lactic-co-glycolic acid) NPs. The size of hybrid NPs is tunable by varying the fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanomedicine : nanotechnology, biology, and medicine
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2014